Graduate Texts
in Mathematics

1. Takeuti/Zaring. Introduction to Axiomatic Set Theory. 2nd ed.
2. Oxtoby. Measure and Category. 2nd ed.
3. Schaeffer. Topological Vector Spaces.
4. Hilton/Stammbach. A Course in Homological Algebra.
5. MacLane. Categories for the Working Mathematician.
6. Hughes/Piper. Projective Planes.
7. Serre. A Course in Arithmetic.
8. Takeuti/Zaring. Axiomatic Set Theory.
9. Humphreys. Introduction to Lie Algebras and Representation Theory.
10. Cohen. A Course in Simple Homotopy Theory.
11. Conway. Functions of One Complex Variable. 2nd ed.
12. Beals. Advanced Mathematical Analysis.
13. Anderson/Fuller. Rings and Categories of Modules. 2nd ed.
14. Golubitsky/Guillemin. Stable Mappings and Their Singularities.
15. Berberian. Lectures in Functional Analysis and Operator Theory.
16. Winter. The Structure of Fields.
17. Rosenblatt. Random Processes. 2nd ed.
18. Halmos. Measure Theory.
19. Halmos. A Hilbert Space Problem Book. 2nd ed., revised.
20. Husemoller. Fibre Bundles. 2nd ed.
21. Humphreys. Linear Algebraic Groups.
22. Barnes/Mack. An Algebraic Introduction to Mathematical Logic.
23. Greub. Linear Algebra. 4th ed.
24. Holmes. Geometric Functional Analysis and its Applications.
25. Hewitt/Stromberg. Real and Abstract Analysis.
26. Manes. Algebraic Theories.
27. Kelley. General Topology.
28. Zariski/Samuel. Commutative Algebra. Vol. I.
29. Zariski/Samuel. Commutative Algebra. Vol. II.
30. Jacobson. Lectures in Abstract Algebra I. Basic Concepts.
31. Jacobson. Lectures in Abstract Algebra II. Linear Algebra.
32. Jacobson. Lectures in Abstract Algebra III. Theory of Fields and Galois Theory.
33. Hirsch. Differential Topology.
34. Spitzer. Principles of Random Walk. 2nd ed.
35. Wermer. Banach Algebras and Several Complex Variables. 2nd ed.
36. Kelley/Namioka et al. Linear Topological Spaces.
37. Monk. Mathematical Logic.
38. Grauert/Fritzsche. Several Complex Variables.
39. Arveson. An Invitation to C*-Algebras.
40. Kemeny/Snell/Knapp. Denumerable Markov Chains. 2nd ed.
41. Apostol. Modular Functions and Dirichlet Series in Number Theory. 2nd ed.
42. Serre. Linear Representations of Finite Groups.
43. Gillman/Jerison. Rings of Continuous Functions.
44. Kendig. Elementary Algebraic Geometry.
45. Loeve. Probability Theory I. 4th ed.
46. Loeve. Probability Theory II. 4th ed.
47. Moise. Geometric Topology in Dimensions 2 and  3.
48. Sachs/Wu. General Relativity for Mathematicians.
49. Gruenberg/Weir. Linear Geometry. 2nd ed.
50. Edwards. Fermat's Last Theorem.
51. Klingenberg. A Course in Differential Geometry.
52. Hartshorne. Algebraic Geometry.
53. Manin. A Course in Mathematical Logic.
54. Graver/Watkins. Combinatorics with Emphasis on the Theory of Graphs.
55. Brown/Pearcy. Introduction to Operator Theory I: Elements of Functional Analysis.
56. Massey. Algebraic Topology: An Introduction
57. Crowell/Fox. Introduction to Knot Theory.
58. Koblitz. p-adic Numbers, p-adic Analysis, and Zeta-Functions. 2nd ed.
59. Lang. Cyclotomic Fields.
60. Arnold. Mathematical Methods in Classical Mechanics. 2nd ed.
61. Whitehead. Elements of Homotopy Theory.
62. Kargapolov/Merzljakov. Fundamentals of the Theory of Groups.
63. Bollobas. Graph Theory.
64. Edwards. Fourier Series. Vol. I. 2nd ed.
65. Wells. Differential Analysis on Complex Manifolds. 2nd ed.
66. Waterhouse. Introduction to Affine Group Schemes.
67. Serre. Local Fields.
68. Weidmann. Linear Operators in Hilbert Spaces.
69. Lang. Cyclotomic Fields II.
70. Massey. Singular Homology Theory.
71. Farkas/Kra. Riemann Surfaces. 2nd ed.
72. Stillwell. Classical Topology and Combinatorial Group Theory.
73. Hungerford. Algebra.
74. Davenport. Multiplicative Number Theory. 2nd ed.
75. Hochschild. Basic Theory of Algebraic Groups and Lie Algebras.
76. Iitaka. Algebraic Geometry.
77. Hecke. Lectures on the Theory of Algebraic Numbers.
78. Burris/Sankappanavar. A Course in Universal Algebra.
79. Walters. An Introduction to Ergodic Theory.
80. Robinson. A Course in the Theory of Groups.
81. Forster. Lectures on Riemann Surfaces.
82. Bott/Tu. Differential Forms in Algebraic Topology.
83. Washington. Introduction to Cyclotomic Fields.
84. Ireland/Rosen. A Classical Introduction to Modern Number Theory. 2nd ed.
85. Edwards. Fourier Series. Vol. II. 2nd ed.
86. Van Lint. Introduction to Coding Theory. 2nd ed.
87. Brown. Cohomology of Groups.
88. Pierce. Associative Algebras.
89. Lang. Introduction to Algebraic and Abelian Functions. 2nd ed.
90. Brønsted. An Introduction to Convex Polytopes.
91. Beardon. On the Geometry of Discrete Groups.
92. Diestel. Sequences and Series in Banach Spaces.
93. Dubrovin/Fomenko/Novikov. Modern Geometry — Methods and Applications. Vol. I. 2nd ed.
94. Warner. Foundations of Differentiable Manifolds and Lie Groups.
95. Shiryayev. Probability, Statistics, and Random Processes.
96. Conway. A Course in Functional Analysis.
97. Koblitz. Introduction to Elliptic Curves and Modular Forms.
98. Bröcker/Tom Dieck. Representations of Compact Lie Groups.
99. Grove/Benson. Finite Reflection Groups. 2nd ed.
100. Berg/Christensen/Ressel. Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions.
101. Edwards. Galois Theory.
102. Varadarajan. Lie Groups, Lie Algebras and Their Representations.
103. Lang. Complex Analysis. 2nd ed.
104. Dubrovin/Fomenko/Novikov. Modern Geometry — Methods and Applications. Part II.
105. Lang. SL2(R).
106. Silverman. The Arithmetic of Elliptic Curves.
107. Olver. Applications of Lie Groups to Differential Equations.
108. Range. Holomorphic Functions and Integral Representations in Several Complex Variables.
109. Lehto. Univalent Functions and Teichmuller Spaces.
110. Lang. Algebraic Number Theory.
111. Husemoller. Elliptic Functions.
112. Lang. Elliptic Functions.
113. Karatzas/Shreve. Brownian Motion and Stochastic Calculus. 2nd ed.
114. Koblitz. A Course in Number Theory and Cryptography.
115. Berger/Gostiaux. Differential Geometry: Manifolds, Curves, and Surfaces.
116. Kelley/Srinivasan. Measure and Integral. Vol. I.
117. Serre. Algebraic Groups and Class Fields.
118. Pedersen. Analysis Now.
119. Rotman. An Introduction to Algebraic Topology.
120. Ziemer. Weakly Differentiate Functions: Sobolev Spaces and Functions of Bounded Variation
121. Lang. Cyclotomic Fields I and II. Combined 2nd ed.
122. Remmert. Theory of Complex Functions. Readings in Mathematics.
123. Ebbinghaus et al. Numbers. Readings in Mathematics.
124. Dubrovin/Fomenko/Novikov. Modern Geometry — Methods and Applications. Part III.
125. Berenstein/Gay. Complex Variables. An Introduction
126. Borel. Linear Algebraic Groups.
127. Massey. A Basic Course in Algebraic Topology.
128. Rauch. Partial Differential Equations.
129. Fulton/Harris. Representation Theory. A First Course. Readings in Mathematics.
130. Dodson/Poston. Tensor Geometry.
131. Lam. A First Course in Noncommutative Rings.
132. Beardon. Iteration of Rational Functions.
133. Harris. Algebraic Geometry. A First Course.
134. Roman. Coding and Information Theory.
135. Roman. Advanced Linear Algebra.
136. Adkins/Weintraub. Algebra: An Approach via Module Theory.
137. Axler/Bourdon/Ramey. Harmonic Function Theory.
138. Cohen. A Course in Computational Algebraic Number Theory.
139. Bredon. Topology and Geometry.
140. Aubin. Optima and Equilibria. An Introduction to Nonlinear Analysis.
141. Becker/Weispfennig/Kredel. Grobner Bases. A Computational Approach to Commutative Algebra.
142. Lang. Real and Functional Analysis. 3rd ed.
143. Doob. Measure Theory.
144. Dennis/Farb. Noncommutative Algebra.
145. Vick. Homology Theory. An Introduction to Algebraic Topology. 2nd ed.
146. Bridges. Computability: A Mathematical Sketchbook.
147. Rosenberg. Algebraic K-Theory and Its Applications.
148. Rotman. An Introduction to the Theory of Groups. 4th ed.
149. Ratcliffe. Foundations of Hyperbolic Manifolds.
150. Eisenbud. Commutative Algebra with a View Toward Algebraic Geometry.
151. Silverman. Advanced Topics in the Arithmetic of Elliptic Curves.
152. Ziegler. Lectures on Polytopes.
153. Fulton. Algebraic Topology: A First Course.
154. Brown/Pearcy. An Introduction to Analysis.
155. Kassel. Quantum Groups.
156. Kechris. Classical Descriptive Set Theory.
157. Mallavin. Integration and Probability.
158. Roman. Field Theory.
159. Conway. Functions of One Complex Variable II.
160. Lang. Differential and Riemannian Manifolds.
161. Borwein/Erdélyi. Polynomials and Polynomial Inequalities.
162. Alperin/Bell. Groups and Representations.
163. Dixon/Mortimer. Permutation Groups.
164. Nathanson. Additive Number Theory. The Classical Bases.
165. Nahanson. Additive Number Theory. Inverse Problems and the Geometry of Sumsets.
166. Sharpe. Differential Geometry: Cartan's Generalization of Klein's Erlangen Program.
167. Morandi. Field and Galois Theory.
168. Ewald. Combinatorial Convexity and Algebraic Geometry.
169. Bhatia. Matrix Analysis.
170. Bredon. Sheaf Theory. 2nd ed.
171. Petersen. Riemannian Geometry.
172. Remmert. Classical Topics in Complex Function Theory.
173. Diestel. Graph Theory. 2nd ed.
174. Bridges. Foundations of Real and Abstract Analysis.
175. Lickorish. An Introduction to Knot Theory.
176. Lee. Riemannian Manifolds.
177. Newman. Analytic Number Theory.
178. Clarke/Ledyaev/Stern/Wolenski. Nonsmooth Analysis and Control Theory.
179. Douglas. Banach Algebra Technique Operator Theory. 2nd ed.
180. Srivastava. A Course on Borel Sets.
181. Kress. Numerical Analysis.
182. Walter. Ordinary Differential Equations.
183. Megginson. An Introduction to Banach Space Theory.
184. Bollobas. Modern Graph Theory.
185. Cox/Little/O'Shea. Using Algebraic Geometry.
186. Ramakrishnan/Valenza. Fourier Analysis on Number Fields.
187. Harris/Morrison. Moduli of Curves.
188. Goldblatt. Lectures on the Hyperreals. An Introduction to Nonstandard Analysis.
189. Lam. Lectures on Modules and Rings.
190. Esmonde/Murty. Problems in Algebraic Number Theory.
191. Lang. Fundamentals of Differential Geometry.
192. Hirsch/Lacombe. Elements of Functional Analysis.
193. Cohen. Advanced Topics in Computational Number Theory.
194. Engel/Nagel. One-Parameter Semigroups for Linear Evolution Equations.
195. Nathanson. Elementary Methods in Number Theory.
196. Osborne. Basic Homological Algebra.
197. Eisenbud/Harris. The Geometry of Schemes.
198. Robert. A Course in  p-adic Analysis.
199. Hedenmalm/Korenblum/Zhu. Theory of Bergman Spaces.
200. Bao/Chern/Shen. An Introduction to Riemann–Finsler Geometry.
201. Hindry/Silverman. Diophantine Geometry: An Introduction.
202. Lee. Introduction to Topological Manifolds.
203. Sagan. The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Function. 2nd ed.
204. Escofier. Galois Theory.
205. Félix/Halperin/Thomas. Rational Homotopy Theory.
206. Murty. Problems in Analytic Number Theory. Readings in Mathematics.
207. Godsil, Royle. Algebraic Graph Theory.
208. Cheney. Analysis for Applied Mathematics.
209. Arveson. A Short Course on Spectral Theory.
210. Rosen. Number Theory in Function Fields.
211. Lang. Algebra. Revised 3rd ed.
212. Matoušek. Lectures on Discrete Geometry.
213. Fritzsche, Grauert. From Holomorphic Functions to Complex Manifolds.
214. Jost. Partial Differential Equations. 2nd ed.
215. Goldschmidt. Algebraic Functions and Projective Curves.
216. D.Serre. Matrices: Theory and Applications.
217. Marker. Model Theory: An Introduction.
218. Lee. Introduction to Smooth Manifolds.
219. Maclachlan, Reid. The Arithmetic of Hyperbolic 3-Manifolds.
220. Nestruev. Smooth Manifolds and Observables.
221. Grünbaum. Convex Polytopes. 2nd ed.
222. Hall. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction.
223. Vretblad. Fourier Analysis and Its Applications.
224. Walschap. Metric Structures in Differential Geometry.
225. Bump: Lie Groups.
226. Zhu. Spaces of Holomorphic Functions in the Unit Ball.
227. Miller, Sturmfels. Combinatorial Commutative Algebra.
228. Diamond, Shurman. A First Course in Modular Forms.
229. Eisenbud. The Geometry of Syzygies.
230. Stroock. An Introduction to Markov Processes.
231. Björner, Brenti. Combinatorics of Coxeter Groups.
232. Everest, Ward. An Introduction to Number Theory.
233. Albiac, Kalton. Topics in Banach Space Theory.
234. Jorgensen. Analysis and Probability.
235. Sepanski. Compact Lie Groups.
236. Garnett. Bounded Analytic Functions.
237. Martinez-Avendano, Rosenthal. An Introduction to Operators on the Hardy-Hilbert Space.
238. Aigner. A Course in Enumeration.
239. Cohen. Number Theory — Volume I: Tools and Diophantine Equations.
240. Cohen. Number Theory — Volume II: Analytic and Modern Tools.
241. Silverman. The Arithmetic of Dynamical Systems.
242. Grillet. Abstract Algebra. 2nd ed.

Hosted by uCoz